gradien garis yang tegak lurus dengan garis

Gradiengaris lurus yang melalui titik-titik A dan B sama dengan gradien ruas garis AB, yaitu: dengan menggunakan persamaan yang ada, maka melalui titik asal dan tegak lurus pada garis yang melalui titik-titik dan 2. Persamaan sumbu ruas 1 Menggambar grafik dari persamaan garis lurus. 2. Menjelaskan pengertian gradien garis lurus. 3. Menentukan gradien garis dari persamaan garis y=mx, y =mx+c, ax+by+c=0, dan garis yang melalui dua titik. 4. Menyebutkan sifat- sifat garis yang: a. Akanditentukan gradien dari garis diperoleh gradien dari garis adalah Karena garis yang apa code. Q&A; Karena garis yang melalui titik tegak lurus dengan maka gradiennya . Akan ditentukan persamaan garis yang melalui titik dan . Jadi, jawaban yang tepat adalah B. Reply 7 0 Membagikan. Pengertiandari garis tegak lurus merupaka garis yang saling berpotongan dan pada titik potongnya membentuk sudut siku-siku sebesar 90°. Dalam menentukan gradien dari dua yang saling tegak lurus apabila dikalikan akan menghasilkan angka -1. Sehingga rumus yang digunakan yakni: y = mx + c Sedangkan rumus gradien adalah m1 = -1/m2 Contoh 1. Dalammateri persamaan garis singgung lingkaran dengan diketahi gradien sering sekali ditemukan hubungan antara 2 garis yaitu sejajar dan tegak lurus, maka: Dua buah garis sejajar maka gradiennya adalah sama : Dua buah garis yang saling tegak lurus perkalian kedua gradiennya adalah -1 : Dengan menentukan gradien garis singgungnya dimana năm nay tuổi mẹ gấp 3 lần tuổi phương. Pengertian Garis Sejajar, Garis Berpotongan, Tegak Lurus, dan Berimpit Sifat-sifat garis di bidang geometri ditentukan oleh kedudukannya terhadap garis lainnya, yang terdiri dari garis sejajar, garis berpotongan, garis tegak lurus, dan garis berimpit. Berikut akan dijelaskan ke-4 sifat kedudukan antar garis tersebut. Artikel terkait Pengertian Garis Titik Bidang dan Ruang beserta Contohnya A. Garis Sejajar Garis sejajar adalah suatu kedudukan dua garis pada bidang datar yang tidak mempunyai titik potong walaupun kedua garis diperpanjang. Secara geometri kesejajaran garis tidak akan pernah bertemu satu dengan lainnya karena mempunyai kemiringan gradien yang sama. Garis-garis sejajar tidak harus sama panjang. Contoh garis sejajar Garis AB dan CD merupakan contoh kedudukan sejajar, karena kedua garis tidak berpotongan walaupun garis diperpanjang Contoh garis tidak sejajar Gambar garis EF dan GH merupakan contoh garis tidak sejajar, karena ketika diperpanjang garis tersebut berpotongan B. Garis Berpotongan Garis berpotongan adalah kedudukan dua garis yang mempunyai titik potong karena kedua garis saling bertemu. Secara geometri garis-garis yang berpotongan terjadi karena mempunyai kemiringan yang berbeda dan panjang antar garis memungkinkan untuk saling bertemu. Garis yang berpotongan sudah pasti tidak sejajar, namun garis tidak sejajar belum tentu berpotongan. Contoh garis berpotongan Garis IJ dan KL merupakan garis berpotongan karena kedua garis saling bertemu dan menghasilkan suatu titik potong C. Garis Tegak Lurus Garis tegak lurus adalah kedudukan garis yang berpotongan dan pada titik potongnya terbentuk sudut siku-siku 90°. Garis tegak lurus juga disebut dengan garis serenjang atau garis perpendikular. Dalam simbol matematika garis tegak lurus disimbolkan dengan simbol perpendikular "⊥", misalnya garis MN tegak lurus dengan OP dapat ditulis MN ⊥ OP. Contoh garis tegak lurus Garis MN dan OP merupakan garis tegak lurus karena saling berpotongan dan titik potongnya membentuk sudut siku-siku Perkalian dua kemiringan gradien garis tegak lurus adalah -1 atau memenuhi persamaan M1 × M2 = -1. Jika, M1 = a/b maka M2 = - b/a * Karena berlaku M1 × M2 = a/b × - b/a = - ab/ab = -1 Contoh Kemiringan garis MN adalah M1 = 2/3, berapakah kemiringan garis OP di atas? Penyelesaian Karena garis OP ⊥ NM maka gradien garis OP = M2 dihitung memenuhi persamaan M1 × M2 = a/b × - b/a = -1 M1 = a/b = 2/3 a = 2 b = 3 M2 = - b/a = - 3/2 Jadi, gradien garis OP adalah - 3/2 D. Garis Berimpit Garis berimpit adalah kedudukan garis yang saling menutupi antara satu dengan lainnya, sehingga garis berimpit tidak dapat dilihat dengan kasat mata. Garis berimpit dapat terjadi karena posisi garis yang sama, namun 2 garis berimpit belum tentu mempunyai panjang yang sama. Contoh garis berimpit Garis a dan b merupakan garis berimpit karena kedua saling menutupi pada posisi yang sama Baca juga tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Pengertian Garis Sejajar, Garis Berpotongan, Tegak Lurus, dan Berimpit". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih… MatematikaALJABAR Kelas 8 SMPPERSAMAAN GARIS LURUSGradien KemiringanGradien yang tegak lurus dengan garis garis 3x + 5y + 20 = 0 adalah A. -5/3 C. 3/5 B. -3/5 D. 5/3Gradien KemiringanPERSAMAAN GARIS LURUSALJABARMatematikaRekomendasi video solusi lainnya0221Garis k menyinggung grafik fungsi gx=3x^2-z+6 di titi...0130Gradien garis yang melalui titik A2, -3 dan B4, 1 adalah0311Gradien garis singgung sebuah kurva pada setiap titik din...Teks videojika kita diminta untuk menentukan gradien garis yang tegak lurus dengan suatu persamaan garis jika persamaan garisnya adalah a x ditambah b y + c = 0 maka gradien garis ini adalah minus a per B dan hubungan antara dua garis yang saling tegak lurus yaitu m1 * m2 = minus 1 sehingga untuk x + 5 y + 20 sama dengan nol berarti gradien garis di sini adalah minus 3 per 5 maka untuk menentukan gradien garis yang lain maka kita tentukan m1 * m2 = min 1 berarti minus 3 per 5 x gradiennya tersebut gradien garis kedua M2 = minus 1 maka M2 nya minus 1 minus 35 kita pindahkan menjadi minus 5 per 3 min dengan minus menjadi plus berarti M2 nya = 5 per 3 maka pilihan yang sesuai di sini adalah Dek sampai jumpa di pertanyaan berikutnya Mari kita belajar tentang materi persamaan garis lurus, gradien, dan bagaimana menentukan apakah dua garis lurus itu tegak lurus atau kita kali ini dimulai dari yang dasar berupa penjabaran materi yang berisi rumus, contoh soal dan jawaban persamaan garis tegak lurus, lalu dilanjutkan dengan latihan soal untuk dikerjakan di kita mulai belajar bersama!1. Menentukan Persamaan Garis Lurus yang Tegak Lurus, Sejajar, Melalui Titik, dan Diagram KartesiusSebelum kita membahas lebih jauh , terlebih dulu kakak berikan gambaran garis besar materi dalam daftar isi di bawah ini yang di dalamnya juga terdapat pengertian persamaan garis lurus dan juga contoh soal persamaan garis lurus SMP kelas 8 dan SMA kelas Persamaan garis lurus dan rumus gradienPada bagian awal ini kak hinda akan menerangkan apa itu gradien dan bagaimana bentuk persamaannya serta jenis dan contoh Pengertian gradienGradien adalah kemiringan gradien dilambangkan dengan Persamaan Gradien dalam garis lurusBentuk umum dari persamaan garis lurus adalahy = mx + cYang mana m merupakan gradien,x dan y adalah variabel, danc adalah teman-teman menjumpai persamaan yang berbentukax + by + c = 0,maka cara mencari gradien nya adalahby = – ax – cy = - ax – c by = - a/bx – c/bJadi, rumus gradien nya adalahm = -a/bc. Macam-macam gradienAda beberapa macam / nilai gradien yang perlu teman-teman tahu, di antaranyaGradien bernilai negatifContoh soal gradien negatifDiketahui sebuah persamaan garis lurus 4y + 2x – 8 = 0. Tentukan gradiennya!Jawabm = -a/b = -2/4 = – ½Jadi, gradiennya bernilai bernilai positifContoh persamaan garis lurusDiketahui sebuah persamaan 3x – 2y + 6 = 0. Tentukan gradiennya!JawabanRumus gradien m = -a/bSehingga -3/-2 = 3/2Gradien yang melalui titik 0,0 atau pangkal koordinatJika sebuah garis lurus melalui titik pangkal, maka nilai gradiennya bisa dicari dengan caram = y/xContoh latihan soal gradienDiketahui sebuah garis melalui pangkal koordinat dan titik 1,3. Berapakah gradiennya?Pembahasanm= y/x = 3/1 = 3Gradien garis yang melalui dua titik x1, y1 dan x2, y2Teman-teman bisa mencari gradien dari sebuah garis lurus hanya dengan mengetahui dua titik yang sebuah garis lurus melalui titik A x1, y1 dan B x2, y2. Maka gradiennya dirumuskan sebagaim = [y2 – y1] [x2 – x1]ContohDiketahui sebuah garis lurus melalui titik 2, 3 dan 1, -4. Berapakah gradiennya?Jawabm = [y2 – y1] [x2 – x1]m = -4 – 3 1 – 2m = -7 -1m = 73. Persamaan garis lurus yang sejajarSilakan lihat gambar kartesius berikut untuk melihat ilustrasi dua buah garis lurus g dan h yang sejajar. Dari gambar di atas kita bisa melihat dua buah garis lurus yang sejajar. Sepanjang apapun garisnya, keduanya tidak akan logika, dua persamaan garis lurus yang sejajar akan memiliki kemiringan garis yang sama. Dengan kata lain, kemiringan atau gradien dari dua garis tersebut adalah sama besar. Dan dituliskan sebagai berikut;Misal y1 = m1x + c1 merupakan persamaan pertama dan y2 = m2x + c2 adalah persamaan kedua. Maka ketika dua garis ini sejajar berlaku;m1 = m2Artinya, gradien pada persamaan garis lurus pertama sama nilainya dengan gradien pada persamaan Contoh soal persamaan garis sejajarSebuah garis lurus memiliki persamaan 6y + 3x – 8 = 0. Tentukan gradien garis yang sejajar dengan persamaan tersebut!b. JawabannyaGaris lurus pertama 6y + 3x – 8 = 0a = 3, b = 6. Jadi;m1 = – a / b = – 3/6 = – ½Syarat gradien garis yang sejajar adalah m1 = m2 = – ½Jadi, gradien garis yang sejajar dengan garis 6y + 3x – 8 = 0 adalah m2 = – ½4. Persamaan garis lurus yang tegak lurusPerhatikan gambar berikut!Gambar di atas menunjukkan diagram kartesius dari dua buah garis lurus k dan l yang tegak lurus satu sama perlu digarisbawahi dalam materi ini adalah bahwa gradien dari dua garis lurus yang saling tegak lurus jika dikalikan akan menghasilkan angka matematika ditulis, misalnya;y1 = m1x + c1dany2 = m2x + c2adalah dua persamaan garis lurus yang saling tegak lurus, maka berlaku;m1 . m2 = -1atau dengan kata lain rumus gradien tegak lurus adalah;m1 = -1/m2ataum2 = -1/m1a. Contoh soal persamaan garis tegak lurusDiketahui sebuah persamaan garis lurus berikut2x + y – 6 = 0Tentukan gradien garis yang tegak lurus dengan garis Penyelesaiannya2x + y – 6 = 0a = 2, b = 1, c = -6m1 = – a/b = -2/1 = -2Gradien garis yang tegak lurus dengan gradien tersebut adalah m1 * m2 = -1m2 = -1/m1m2 = -1/-2m2 = ½Jadi, gradien garis yang tegak lurus dengan garis 2x + y – 6 = 0 adalah Persamaan Garis Lurus Melalui 1 TitikIngat, bahwa bentuk persamaan garis lurus secara umum adalah;y = mx + cdengan m adalah gradien atau menentukan persamaannya, maka digunakan rumus persamaan garis lurus yang melalui satu titik x1, y1;y – y1 = m x – x1a. Contoh SoalTentukan persamaan garis yang melalui titik 4,3 dengan gradien sebesar PembahasanCara 1 Pakai rumus umumDiketahui titiknya adalah x1, y1 —-> 4,3, dengan demikian nilai x1 = 4 dan y1 = 3, maka langkah selanjutnya adalah substitusi nilai m dan nilai x1, y1 ke dalam rumus;y – y1 = m x – x1y – 3 = 2 x – 4y – 3 = 2x – 8y = 2x – 8 + 3 pindah ruas, negatif menjadi positify = 2x – 5Jadi, persamaannya adalah y = 2x – 5Cara 2 pakai rumus cara cepatMencari nilai c dari persamaan umum garis lurus, yakni;y = mx + cSubstitusi nilai gradien 2 dan nilai 4, 3 ke dalam persamaan di atas;3 = 2. 4 + c3 = 8 + cc = 3 – 8c = – 5Kemudian, dimasukkan atau disubstitusikan ke persamaan umum garis lurus, menjadi;y = mx + cy = 2x – 5Jadi, persamaannya adalah y = 2x – 56. Persamaan Garis Lurus Melalui 2 TitikRumus persamaan garis melalui 2 titik x1, y1 dan x2, y2 adalaha. Contoh soalTentukan persamaan garis lurus yang melalui dua titik 2, -4 dan 1, 4!b. JawabanDiketahui x1 = 2, y1 = -4, x2 = 1, y2 = 4Jadi, persamaan garisnya adalah y = -8x + 127. Contoh soal persamaan garis lurus dan jawabannyaBerikut adalah beberapa contoh soal yang bisa teman-teman pakai belajar di rumaha. Contoh Soal 1Carilah persamaan garis yang sejajar dengan persamaan garis lurus y = 2x – 3 dan melalui titik 4,3.Jawaban dan penyelesaianDiketahui, persamaan garis lurus pertama adalah y = 2x – 3Di mana y1 = m1x + c1 maka y = 2x – 3, yang artinya m1= garisnya sejajar, maka m1 = m2 = nilai m2 = 2 di atas pada persamaan y = mx + c. Substitusikan juga nilai x dan y yang dilalui oleh garis = mx + c3 = + c3 = 8 + cc = 3 – 8c = -5Dengan demikian, dapat disimpulkan bahwa persamaan garis lurus yang sejajar dengan garis y = 2x – 3 adalah y = 2x – Contoh Soal 2Tentukan persamaan garis lurus yang sejajar dengan garis 2x + 3y + 6 = 0 dan melalui titik -2, 5!Jawaban dan penyelesaianLangkah pertama, ubah dulu persamaan 2x + 3y + 6 = 0 dalam bentuk persamaan umum, menjadi;2x + 3y + 6 = 03y = -2x – 6y = -2/3 x – 2Dengan begini, nilai m1 = -2/3Atau cari nilai m1 memakai rumus m1 = -a/b dari persamaan2x + 3y + 6 = 0 —> ax + by + c = 0m1 = -2/3Kemudian, m1 = m2 = -2/3 karena sejajar, substitusikan pada persamaan berikut titik yang dilalui oleh garis tersebut;y = mx + c5 = -2/3 . -2 + c5 = 4/3 + cc = 5 – 4/3c = 11/3Substitusi ke persamaan umum lagi;y = mx + cy = -2/3x + 11/3 dikalikan 3 semua3y = -2x + 112x + 3y – 11 = 0Jadi, persamaan garis yang sejajar dengan 2x + 3y + 6 = 0 adalah 2x + 3y – 11 = Contoh Soal 3Tentukan persamaan garis lurus yang tegak lurus dengan garis y – 2x + 3 = 0 dan melalui titik 4,3!Jawaban dan penyelesaianKita perlu mengubah dulu persamaannya dalam bentuk umum y = mx + c, yakni;y – 2x + 3 = 0y = 2x – 3Dari persamaan ini, dapat diketahui bahwa gradien garisnya adalah 2, ditulis m1 = kita bisa mencari nilai m1 dari rumus -a/ adalah y – 2x + 3 = 0 —-> ax + by + c = 0Sehingga a = -2, b = 1, dan c = = -a/b = – -2/1 = 2Karena tegak lurus, maka m1 . m2 = -1 atau m2 = – ½Selanjutnya, teman-teman bisa menyubstitusi nilai m2 yang sudah diperoleh dan koordinat titik 4,3 ke dalam persamaan y = mx + c menjadi;3 = – ½ .4 + cc = 3 + 2c = 5Persamaan kedua dapat dicari dengan cara substitusi;y = mx + cy = – ½ x + 5Jadi, persamaan garis lurus yang tegak lurus terhadap garis y = 2x – 3 adalahy = – ½ x + Contoh Soal 4Sejajar atau tegak luruskah garis y – 3x + 4 = 0 dan y – 3x – 2 = 0?Jawaban dan penyelesaianPersamaan 1;y – 3x + 4 = 0y = 3x – 4m1 = 3Persamaan 2;y – 3x – 2 = 0y = 3x + 2m2 = 3Jadi, dua garis tersebut sejajar, karena m1 = m2 = 3e. Contoh Soal 5Sejajar ataukah tegak lurus persamaan garis lurus 3x – y = 5 dan –x – 3y = 6 ?Jawaban dan penyelesaianPersamaan pertama;3x – y = 5-y = -3x + 5 kalikan dengan -1y = 3x – 5m1 = 3Persamaan kedua;–x – 3y = 6-3y = x + 6y = x + 6/-3y = – 1/3 x – 2m2 = -1/3Kemudian, cari hubungan antara m1 dan m2, sebagai berikut;m1 . m2 = 3 . -1/3 = -1Dengan demikian, kedua garis ini tegak Contoh Soal 6Tentukan persamaan garis lurus yang tegak lurus dengan garis 2x + 3y + 6 = 0 dan melalui titik -2, 5!Jawaban dan penyelesaian2x + 3y + 6 = 0, makaa = 2, b = 3, c = 6m1 = -a/b = -2/3Karena tegak lurus, makam2 = -1/m1 = 3/2Persamaan garis yang melalui titik -2, 5 adalah…y – y1 = m x – x1y – 5 = 3/2 [x – -2]y = 3/2 x + 3 + 5y = 3/2 x + 8 semua dikali 22y = 3x + 163x – 2y + 16 = 0Jadi, garis yang tegak lurus dengan garis 2x + 3y + 6 = 0 dan melalui titik -2,5 adalah 3x – 2y + 16 = Cara mencari titik koordinat untuk menggambar grafik diagram kartesiusAgar makin mudah memahami materi persamaan garis lurus, kak Hinda akan menggunakan soal nomor 6 di atas untuk menggambarkan contoh soal koordinat kartesius dalam bentuk diagram. Tapi sebelumnya, kita harus menentukan titik koordinatnya terlebih dulu. Berikut adalah cara mencari titik koordinat kartesiusPertama-tama, cari dulu koordinat x, 0, dan y,0Persamaan 1 2x + 3y + 6 = 0Untuk nilai y = 0, maka nilai x adalah2x + 0 + 6 = 02x = -6x = -3Untuk nilai x = 0, maka nilai y adalah0 + 3y + 6 = 03y = -6y = -2Kemudian ambil 2 titik lain sembarangMisal x = -1 dan x = 1 maka jika dimasukkan ke dalam persamaan ditemukan secara berturut-turut y = -4/3 dan y = -8/ kita mendapatkan 4 koordinat, yakni 0, -2, 1, -8/3, -1, -4/3, dan -3, 0. Hubungkan keempat titik dalam diagram 2x + 3y + 6 = 0xy0-21-8/3-1-4/3-30Lakukan hal serupa untuk persamaan kedua. Maka akan ditemukan 4 titik koordinat sebagai berikut0, 8, 1, 19/2, -1, 13/2, dan -16/3, 0Hubungkan keempat titik koordinat tersebut dalam diagram kartesius sehingga terbentuk sebuah garis 3x – 2y + 16 = 0xy08119/2-113/2-16/30Jadi, jika digambar dalam diagram kartesius hasilnyaCatatanDalam membuat diagram kartesius, langkah paling penting dan mudah adalah dengan mencari nilai titik koordinat kartesius x, 0 dan atau y, 0 terlebih dulu. Dengan langkah ini, maka akan jauh lebih mudah yang saya gambar di jika memang sudah tahu titik yang dilalui, maka gunakan titik ini untuk membuat informasi tentang gradien persamaan garis lurus, dua garis yang sejajar, tegak lurus, dan garis yang melalui satu titik. Juga, bagaimana cara identifikasi apakah dua garis saling sejajar atau tegak belajar. Langkah 1Tulis kembali dalam bentuk perpotongan untuk lebih banyak langkah...Langkah perpotongan kemiringan adalah , di mana adalah gradiennya dan adalah perpotongan sumbu semua suku yang tidak mengandung ke sisi kanan dari untuk lebih banyak langkah...Langkah dari kedua sisi persamaan ke kedua sisi setiap suku pada dengan dan untuk lebih banyak langkah...Langkah setiap suku di dengan .Langkah sisi untuk lebih banyak langkah...Langkah faktor persekutuan dari .Ketuk untuk lebih banyak langkah...Langkah faktor sisi untuk lebih banyak langkah...Langkah setiap untuk lebih banyak langkah...Langkah dua nilai negatif menghasilkan nilai tanda negatif di depan Rumus Gradien adalah rumus yang di pakai untuk mengukur pada kemiringan suatu garis, Berikut ini akan kami jelaskan lengkap mengenai rumus gradien yang meliputi pengertian, rumus dan contoh soalnya Gradien disebut juga sebagai koefisien arah pada garis lurus dan dilambangkan huruf m.. Untuk lebih jelasnya simak pembahasan di bawah ini rumus gradien Gradien adalah nilai kemiringan pada suatu garis yang membandingkan antara komponen Y dengan komponen X Rumus Mencari Gradien Terdapat beberapa kondisi ataupun keadaan untuk mencari gradien garis, perhatika pembahasa berikut ini 1. Gradien Garis Melalui Titik Pusat 0,0 dan Titik x, y Diketahui bahwa persamaan garis yang melalui titik pusat 0,0 dan titik x, y adalah y = mx. Perhatikan contoh berikut ini. Mari kita bahas dengan soal dan pembahasannya Tentukanlah gradien persamaan garis melalui titik pusat dan titik 3, 5! Penyelesaian Persamaan garis melalui titik 0, 0 dan 3, 5 adalah y = 5/3x. Hingga gradiennya yaitu 5/3. Dari contoh soal tersebut bisa kita simpulkan bahwa gradien dari persaman garis y = mx adalah m. Kesimpulan perbandingan antara komponen y dengan komponen x pada tiap ruas garis adalah sama. Nilai perbandingan itu dinamakan gradien. Maka, persamaan garis y = mx mempunyai gradien m dengan m = y/x. 2. Gradien Garis Melalui Dua Buah Titik x1, y1 dan x2, y2 Tidak selalu bahwa sebuah garis tersebut melewati titik pusat 0,0. Jika suatu garis tidak melalui titik pusat 0,0, dapatkah kamu menentukan gradiennya? Mari kita bahas contoh soal dan pembahasannya Tentukanlah gradien persamaan garis melalui titik 6, 2 dan titik 3, 5! Penyelesaian x1 = 6; y1 = 2; x2 = 3; y2 = 5 Jadi, gradien persamaan garisnya adalah -1. Kesimpulan perbandingan komponen x dan komponen y untuk setiap ruas garis yaitu sama, yaitu 1. Bilangan 1 ini adalah gradien dari persamaan garis y = x + 2. Maka, persaman garis y = mx, c ≠ 0 mempunyai gradien m dengan; 3. Gradien Garis Sejajar Sumbu-x dan Sumbu-y Untuk mencari gradien garis yang sejajar sumbu-x dan gradien garis yang sejajar sumbu-y bisa memakai rumus berikut Perhatikan gambar berikut ini Garis o sejajar dengan sumbu-x dan garis n sejajar dengan sumbu-y. Pada gambar tersebut terlihat jelas bahwa garis o melalui titik -4, 2 dan 5, 2. Gradien garis o yaitu Maka, gradien garis sejajar sumbu-x adalah 0. Perhatikan garis n di bawah ini! Garis n melalui titik 4, 8 dan 4, -5. Gradien garis n yaitu m = –5 – 84 – 4 = 13/0 = tidak didefinisikan. Maka, gradien garis sejajar sumbu-y tidak didefinisikan. 4. Gradien Garis Yang Saling Sejajar Gradien garis sejajar sumbu-x yaitu 0. Bagaimana dengan gradien dengan dua buah garis yang sejajar seperti terlihat pada gambar berikut? Perhatikan gambar tersebut, lalu kemudian lakukan kegiatan di bawah ini guna mencari gradien garis yang sejajar. Apa yang bisa di simpulkan berdasarkan kegiatan itu ? Carilah gradien ruas garis AB, PQ, MN, dan RS pada gambar tersebut dengan melengkapi titik-titik berikut ini! • Titik A 1, 4 ; B 6, 11 Gradien AB = 11 – 46 – 1 = 7/5 • Titik P 2,2 ; Q 7,9 Gradien PQ = 9 – 27 – 2 = 7/5 • Titik M 6,3; N 11,10 Gradien MN = 10 – 311–6 = 7/5 • Titik R 1,4; S 6,11 Gradien RS = 11 – 76 – 1 = 7/5 Maka, gradien garis AB = PQ = MN = RS = 7/5 . 5. Gradien Garis Saling Tegak Lurus Selain kedudukan 2 buah garis sejajar, ada juga kedudukan 2 garis yang saling tegak lurus. Bagaimana gradien garis yang tegak lurus? Apakah gradiennya sama? Gradien 2 buah garis yang tegak lurus jika dikalikan hasilnya sama dengan –1. Maka, jika l adalah sebuah garis tegak lurus dengan garis p maka berlaku ml × mp = –1. Untuk memudahkan dala pemahaman, sima beberapa contoh soal dibawah ini Soal Tentukanlah gradien dari persamaan garis berikut ini a y = 3x + 2 b 10x − 6y + 3 = 0 Jawab a y = 3x + 2 Pola persamaan garis pada soal a adalah y = mx + C Hingga mudah menemukan gradien garisnya m = 3 b 18x − 6y + 24 = 0 Ubah persamaan b jadi pola y = mx + c 18x − 6y + 24 = 0 18x + 24 = 6y 6y = 18x + 24 bagi dengan 6 y = 3x + 4 hingga m = 3 Soal No. 2 Tentukanlah persamaan garis melalui titik 3, 1 dan tegak lurus dengan garis y = 2x + 5 Jawab 2 garis saling tegak lurus jika memenuhi syarat maka sebagai berikut m1 ⋅ m2 = −1 y = 2x + 5 mempunyai gradien m1 = 2, hingga garis yang dicari persamaannya harus mempunyai gradien m1 ⋅ m2 = −1 2 ⋅ m2 = −1 m2 = − 1/2 Susun persamaan garisnya y − y1 = mx − x1 y − 1 = 1/2x − 3 y − 1 = 1/2 x − 3/2 y = 1/2 x − 3/2 + 1 y = 1/2 x − 1/2 Soal No. 3 Tentukanlah persamaan garis yang melewati titik 3, 1 dan sejajar garis y = 2x + 5 Jawab 2 garis yang sejajar mempunyai syarat gradiennya harus sama atau m1 = m2 Gradien garis y = 2x + 5 yaitu 2 Hingga gradien garis yang dicari juga 2 sebab mereka sejajar. Hingga y − y1 = mx − x1 y − 1 = 2 x − 3 = 2x − 6 y = 2x − 6 + 1 y = 2x − 5 Soal No. 4 Garis p mempunyai persamaan y = 2x + 5 Tentukanlah persamaan garis yang didapat dengan a menggeser garis p keatas sebanyak 3 satuan b menggeser garis p kebawah sebanyak 3 satuan Jawab Pergeseran garis ke atas dan ke bawah. y = 2x + 5 a digeser keatas 3 satuan menjadi y = 2x + 5 + 3 y = 2x + 8 b digeser kebawah 3 satuan y = 2x + 5 − 3 y = 2x + 2 Soal No. 5 Garis m mempunyai persamaan y = 2x + 10 Tentukanlah persamaan garis yang didapatkan a menggeser garis m ke arah kanan sebanyak 3 satuan b menggeser garis m ke arah kiri sebanyak 3 satuan Jawab Pergeseran garis ke kanan dan ke kiri. y = 2x + 10 a digeser ke kanan 3 satuan y = 2x − 3 + 10 y = 2x − 6 + 10 y = 2x + 4 b digeser ke kiri 3 satuan y = 2x + 3 + 10 y = 2x + 6 + 10 y = 2x + 16 Demikianlah pembahasan mengenai gradien, Semoga bermanfaat Artikel Terkait Persamaan Garis Lurus Rumus Barisan Geometri dan Deret Geometri Matematika

gradien garis yang tegak lurus dengan garis